# A meatloaf recipe calls for 7/8 cup of breadcrumbs for the loaf and the topping. If 3/4 is used for the loaf, what fraction of a cup used for the topping?

Dec 2, 2017

$\setminus \frac{1}{8}$ of a cup of breadcrumbs will be used for the topping.

#### Explanation:

To find what fraction is used for the topping, we need to subtract the fraction used for the loaf from the total amount of breadcrumbs:

$\textcolor{red}{\setminus \textrm{T o t a l b r e a \mathrm{dc} r u m b s}} - \textcolor{b l u e}{\setminus \textrm{p a r t u s e d f \mathmr{and} l o a f}} = \textcolor{g r e e n}{\setminus \textrm{p a r t u s e d f \mathmr{and} \top \pi n g}}$

We know two of those values, which we can plug in:

$\textcolor{red}{\setminus \frac{7}{8}} - \textcolor{b l u e}{\setminus \frac{3}{4}} = \textcolor{g r e e n}{\setminus \textrm{p a r t u s e d f \mathmr{and} \top \pi n g}}$

In order to subtract fractions, we need a common denomator. Here, we can multiply the blue fraction by $\setminus \frac{2}{2}$ to get a common denominator of $8$:

$\textcolor{red}{\setminus \frac{7}{8}} - \textcolor{b l u e}{\setminus \frac{3 \setminus \times 2}{4 \setminus \times 2}} \setminus \quad \setminus \rightarrow \setminus \quad \textcolor{red}{\setminus \frac{7}{8}} - \textcolor{b l u e}{\setminus \frac{6}{8}}$

Now we can subtract the fractions:

$\textcolor{g r e e n}{\setminus \frac{1}{8}} = \textcolor{g r e e n}{\setminus \textrm{p a r t u s e d f \mathmr{and} \top \pi n g}}$