# A triangle has sides A, B, and C. The angle between sides A and B is #(3pi)/4#. If side C has a length of #16 # and the angle between sides B and C is #pi/12#, what are the lengths of sides A and B?

##### 1 Answer

Side

:)

#### Explanation:

We can get the value of side A and B by using the "Law of Sines",

First, we must convert the radian value to degree value.

To convert radian value to degree value,

Multiply it by

since Angle

Angle

and Angle

Angle

using the law of sines,

using algebraic technique we get,

we use again the "Law of Sines", since "Pythagorean Theorem" doesn't work on Non-Right Triangles,

since angle

Angle

Angle

Applying again the Law of Sines to get the value of side of

Applying algebraic technique, we get,

Side

Hence, we get:

Side

Tip on Trigonometry:

Pythagorean Theorem is only reliable in solving right triangles, while Law of Sines and Cosines works in almost any triangles

:)