An AR series has an EMF ESinCot where E is a constant. The current i satisfies at time t, L#di/dt#+Ri=ESinCot obtain the current at time t if initially, it is zero?

1 Answer
Jul 12, 2018

Please see the explanation below

Explanation:

The differential equation is

#L(di)/(dt)+Ri=Esin(omegat)#

The general solution to the ODE is

#i(t)=i_h+i_p#

The first is the solution to the homogeneous equation

#L(di)/(dt)+Ri=0#

#=>#, #L(di)/(dt)=-Ri#

#=>#, #(di)/i=-R/Ldt#

Integrating both sides

#=>#, #int(di)/i=int-R/Ldt#

#lni=-R/L*t+C_1#

#i=Ce^(-R/L*t)#

Let the particular solution be of the form

#i_p=Acos(omegat)+Bsin(omegat)#

#(di)/(dt)=-omegaAsin(omegat)+Bomegacos(omegat)#

Substituting this in the ODE, we get

#L(-omegaAsin(omegat)+Bomegacos(omegat))+R(Acos(omegat)+Bsin(omegat))=Esin(omegat)#

Grouping the coefficients of the sines and the cosines, we get

#-LAomega+RB=E#....................#(1)#

And

#LBomega+RA=0#....................#(2)#

Solving for #A# and #B#

#A=-(Lomega)/(R)B#

#Lomega((Lomega)/(R)B)+RB=E#

#B(L^2omega^2/R+R)=E#

#B=(ER)/(L^2omega^2+R^2)#

And

#A=-(Lomega)/(R)*(ER)/(L^2omega^2+R^2)#

#=-(LEomega)/(L^2omega^2+R^2)#

The particular solution is

#i_p=-(LEomega)/(L^2omega^2+R^2)cos(omegat)+(ER)/(L^2omega^2+R^2)sin(omegat)#

And the general solution is

#i(t)=-(LEomega)/(L^2omega^2+R^2)cos(omegat)+(ER)/(L^2omega^2+R^2)sin(omegat)+Ce^(-R/L*t)#

Plugging in the initial conditions #i=0# when #t=0#

#C=(LEomega)/(L^2omega^2+R^2)#

And finally,

#i(t)=-(LEomega)/(L^2omega^2+R^2)cos(omegat)+(ER)/(L^2omega^2+R^2)sin(omegat)+(LEomega)/(L^2omega^2+R^2)e^(-R/L*t)#