An object is at rest at #(4 ,8 ,3 )# and constantly accelerates at a rate of #4/3 m/s^2# as it moves to point B. If point B is at #(3 ,1 ,7 )#, how long will it take for the object to reach point B? Assume that all coordinates are in meters.

1 Answer
Mar 27, 2016

Answer:

#t=3,49 " s"#

Explanation:

#"The Point of A="(4,8,3)#
#"The Point of B="(3,1,7)#
#"distance between two point:"#
#s=sqrt((B_x-A_x)^2+(B_y-A_y)^2+(B_z-A_z)^2)#

#s=sqrt((3-4)^2+(1-8)^2+(7-3)^2)#

#s=sqrt((-1)^2+(-7)^2+4^2)#

#s=sqrt(1+49+16)" "s=sqrt66#

#s=1/2*a *t^2 #
#"equation for object moving at constant acceleration from rest"#
#sqrt 66=1/2*4/3*t^2#
#6*sqrt66=4*t^2#
#6*8,12=4*t^2#
#48,72=4*t^2#
#t²=(48,72)/4#
#t^2=12,18#

#t=3,49 " s"#