At which point along the x axis will #q_2# experience no net force given #d=2 m# and relation between charges 1 and 3 is #3q_1=q_3#?
1 Answer
Let charge
Let
Force on
#vecF_(q_1to q_2)=k_e(q_1q_2)/x^2hati#
Similarly force on
#vecF_(q_3to q_2)=-k_e(q_3q_2)/(d-x)^2hati#
For net force on
#vecF_(q_1to q_2)+vecF_(q_3to q_2)=0=k_e(q_1q_2)/x^2hati+(-k_e(q_3q_2)/(d-x)^2hati)#
#=>(q_1)/x^2=(q_3)/(d-x)^2#
Inserting value of charges
#(q_1)/x^2=(3q_1)/(d-x)^2#
#=>1/x^2=(3)/(d-x)^2#
#=>3x^2-(d-x)^2=0#
#=>(sqrt3x)^2-(d-x)^2=0#
#=>[sqrt3x+(d-x)][sqrt3x-(d-x)]=0#
#=>[d+x(sqrt3-1)][x(sqrt3+1)-d]=0#
Two roots are
#[d+x(sqrt3-1)]=0and [x(sqrt3+1)-d]=0#
#x=-d/(sqrt3-1)and x=d/(sqrt3+1)#
Rationalizing denominators we get
#x=-d/2(sqrt3+1)and x=d/2(sqrt3-1)#
Inserting given value of
#x=-(sqrt3+1)\ m#
# x=(sqrt3-1)\ m#
Both solutions are valid if we consider only the magnitude of the net force. When we consider direction as well we find that only valid solution is when
Hence,