Calculate: #sum1/(n!+(n+1)!)# ; n from 0 to infinity?

2 Answers
Feb 21, 2018

#sum_(n=0)^oo 1/(n!+(n+1)!) = 1#

Explanation:

Transform the general term of the series as follows:

#1/(n!+(n+1)!) = 1/(n!+(n+1)n!)#

#1/(n!+(n+1)!) = 1/(n!(1+n+1))#

#1/(n!+(n+1)!) =1/(n!(n+2))#

#1/(n!+(n+1)!) = (n+1)/((n+2)!)#

#1/(n!+(n+1)!) = (n+2-1)/((n+2)!)#

and finally:

#(1) " " 1/(n!+(n+1)!) =1/((n+1)!) -1/((n+2)!)#

Consider now the MacLaurin series of the exponential function:

#e^x = sum_(k=0)^oo x^k/(k!)#

For #x=1# we get:

#e = sum_(k=0)^oo 1/(k!)#

extract the first term from the series:

#e = 1+ sum_(k=1)^oo 1/(k!)#

and changing the index to #n=k-1#:

#e-1 = sum_(n=0)^oo 1/((n+1)!)#

Similarly extracting the first two terms of the series we get:

#e-2 = sum_(n=0)^oo 1/((n+2)!)#

Summing now the terms in equation #(1)# we have:

#sum_(n=0)^oo 1/(n!+(n+1)!) = sum_(n=0)^oo1/((n+1)!) - sum_(n=0)^oo1/((n+2)!)#

#sum_(n=0)^oo 1/(n!+(n+1)!) = (e-1)-(e-2) = 1#

Feb 21, 2018

#1#

Explanation:

#int\ x^(n+1)/(n!) dx = 1/(n+2)x^(n+2)/(n!)# and

#sum_(n=0)^oo x^(n+1)/(n!) = x e^x# and

#int_0^x x e^x dx = 1+(x-1)e^x# and then

#S(x)=sum_(n=0)^oo1/(n+2)x^(n+2)/(n!) = 1+(x-1)e^x#

and finally

#S(1) = sum_(n=0)^oo1/((n+2)(n!)) = 1#