Calculate the expression step by step #(root3(2+sqrt3)\timessqrt(7-4\timessqrt3))#? Answer should be #(root3(7-4\timessqrt3))# and I just want to know HOW?

#root3(2+sqrt3)\timessqrt(7-4\timessqrt3)#

1 Answer
Feb 15, 2018

Please see below.

Explanation:

#2+sqrt3#

= #((2+sqrt3)(2-sqrt3))/(2-sqrt3)#

= #(2^2-(sqrt3)^2)/(2-sqrt3)#

= #1/(2-sqrt3)#

= #1/sqrt((2-sqrt3)^2)#

= #1/sqrt(4+(sqrt3)^2-4sqrt3)#

= #1/sqrt(7-4sqrt3)#

= #(7-4sqrt3)^(-1/2)#

Hence #root(3)(2+sqrt3)xxsqrt(7-4sqrt3)#

= #(2+sqrt3)^(1/3)xx(7-4sqrt3)^(1/2)#

= #((7-4sqrt3)^(-1/2))^(1/3)xx(7-4sqrt3)^(1/2)#

= #(7-4sqrt3)^(-1/6+1/2)#

= #(7-4sqrt3)^(1/3)#

= #root(3)(7-4sqrt3)#