Can anyone prove the formula of volume expansion coefficient and the compressibility for van der Walls gas ?

#beta=(Rv^2(v-b))/(RTv^3-2a(v-b)^2)#
#k=(v^2(v-b)^2)/(RTv^3-2a(v-b)^2#

1 Answer
May 2, 2018

See below:

Explanation:

For the van der Waals gas, we have

#(p+a/v^2 )(v-b) = RT#

Differentiating both sides with respect to #T#, while holding #p# constant yields

#(p+a/v^2)((del v)/(del T))_P-(2a)/v^3 (v-b) ((del v)/(del T))_P = R#

Since #p+a/v^2 =( RT)/(v-b)#, this can be rewritten as

#((del v)/(del T))_P[(RT)/(v-b)-(2a)/v^3 (v-b)]=R implies#

#((del v)/(del T))_P = R/{(RT)/(v-b)-(2a)/v^3 (v-b)}= {Rv^3(v-b)}/{RTv^3-2a(v-b)^2}#

Thus

#beta equiv 1/v((del v)/(del T))_P = {Rv^2(v-b)}/{RTv^3-2a(v-b)^2} #

For the compressibility, we differentiate both sides of the van der Waals equation with respect to #P#, holding #T# constant

#(p+a/v^2)((del v)/(del P))_T +(1-(2a)/v^3((del v)/(del P))_T)(v-b)=0#

which can be rewritten as

#(RT)/(v-b) ((del v)/(del P))_T +(1-(2a)/v^3((del v)/(del P))_T)(v-b)=0 implies#

#[RTv^3-2a(v-b)^2] ((del v)/(del P))_T =-v^3(v-b)^2 implies#

#((del v)/(del P))_T = -{v^3(v-b)^2}/[RTv^3-2a(v-b)^2] implies#

#kappa equiv -1/v ((del v)/(del P))_T = {v^2(v-b)^2}/[RTv^3-2a(v-b)^2] #