Apr 16, 2018

${\left(\frac{3}{4}\right)}^{R} = {42}^{\circ} {57}^{'} {16}^{' '}$
Hint: color(red)((1)pi^R=180^circto180  Degree
color(red)((2)1^circ=60^'to60 Minutes
color(red)((3)1^'=60^('')to 60 Seconds

#### Explanation:

We know that, ${\pi}^{R} = {180}^{\circ}$

$\therefore {\left(\frac{3}{4}\right)}^{R} = {\left(\frac{3}{4} \times \frac{180}{\pi}\right)}^{\circ} \ldots \to w h e r e , \pi = \frac{22}{7}$

$\implies {\left(\frac{3}{4}\right)}^{R} = {\left(\frac{3}{4} \times 180 \times \frac{7}{22}\right)}^{\circ}$

$\textcolor{w h i t e}{\ldots \ldots \ldots \ldots \ldots .} = {\left(\frac{945}{22}\right)}^{\circ}$

$\textcolor{w h i t e}{\ldots \ldots \ldots \ldots \ldots .} = {\left(42 \frac{21}{22}\right)}^{\circ}$

color(white)(................)=42^circ+ (21/22xx60)^'to[As,1^circ=60^']

$\textcolor{w h i t e}{\ldots \ldots \ldots \ldots \ldots .} = {42}^{\circ} + {\left(\frac{1260}{22}\right)}^{'}$

$\textcolor{w h i t e}{\ldots \ldots \ldots \ldots \ldots .} = {42}^{\circ} + {\left(57 \frac{6}{22}\right)}^{'}$

color(white)(................)=42^circ+57^'+(6/22xx60)^('')to [as1^'=60^('')]

$\textcolor{w h i t e}{\ldots \ldots \ldots \ldots \ldots .} = {42}^{\circ} + {57}^{'} + {\left(\frac{360}{22}\right)}^{' '}$

$\textcolor{w h i t e}{\ldots \ldots \ldots \ldots \ldots .} = {42}^{\circ} + {57}^{'} + {16}^{' '}$

$\textcolor{w h i t e}{\ldots \ldots \ldots \ldots \ldots .} = {42}^{\circ} {57}^{'} {16}^{' '}$