#cos^2(2x)+sin^2(2x)=?# what value is this equal to?

1 Answer
Jun 12, 2018

#cos^2(2x)+sin^2(2x)=1#

Explanation:

Remember the equation #cos^2x+sin^2x=1#?
Well the #x# refers to any number so if your number is #2x#, then #cos^2 2x+sin^2 2x=1#

You can also prove this by using the double angle formula

#cos^2(2x)+sin^2(2x)#

=#(cos^2x-sin^2x)^2+(2sinxcosx)^2#

=#cos^4x-2sin^2xcos^2x+sin^4x+4sin^2xcos^2x#

=#cos^4x+2sin^2xcos^2x+sin^4x#

=#(cos^2x+sin^2x)^2#

=#1^2#

=#1#