cot765^@ = cot765=? sec765^@ = sec765=? csc765^@ = csc765=?

2 Answers
Dec 1, 2017

1,sqrt2,sqrt21,2,2

Explanation:

"note that "765^@=765-720^@=45^@note that 765=765720=45

rArrcot765^@=1/(tan45^@)=1/1=1cot765=1tan45=11=1

rArrsec765^@=1/(cos45^@)=1/(1/sqrt2)=sqrt2sec765=1cos45=112=2

rArrcsc765^@=1/(sin45^@)=1/(1/sqrt2)=sqrt2csc765=1sin45=112=2

Dec 1, 2017

cot(45^@)=1cot(45)=1
sec(45^@)=sqrt2sec(45)=2
csc(45^@)=sqrt2csc(45)=2

Explanation:

Since, they are all in the same quadrant,

cot(765^@)=cot(45^@)=1cot(765)=cot(45)=1
sec(765^@)=sec(45^@)=sqrt2sec(765)=sec(45)=2
csc(765^@)=csc(45^@)=sqrt2csc(765)=csc(45)=2

With the help of this chart, we can, hence, easily solve the equation.

cot(45^@)=1cot(45)=1
sec(45^@)=sqrt2sec(45)=2
csc(45^@)=sqrt2csc(45)=2

![https://study.com/academy/lesson/http://trigonometric-function-values-of-special-angles.html](https://useruploads.socratic.org/E0bxHhKSTdW844KJXfeM_imagetrigfunctions9.jpg)