Could you please solve me this equation: #1 + sin^3 (x) + cos^3 (x) = 3/2 sin (2x)#?

1 Answer
Apr 18, 2018

#1 + sin^3 (x) + cos^3 (x) = 3/2 sin (2x)#

#=>1 + (sin (x) + cos (x))(sin^2x+cos^2(x)-sin(x)cos(x)) = 3/2 sin (2x)#

#=>1 + (sin (x) + cos (x))(1-1/2xx2sin(x)cos(x)) = 3/2 sin (2x)#

#=>1 + (sin (x) + cos (x))(1-1/2((sin(x)+cos(x))^2-1)) = 3/2 ((sinx+cosx)^2-1)#

Putting #sinx+cosx=y#

#=>1 + y(1-1/2(y^2-1) = 3/2 (y^2-1)#

#=> (y+1)-y/2(y-1)(y+1)-3/2 (y^2-1)=0#

#=> 2(y+1)-y(y-1)(y+1)-3 (y^2-1)=0#

#=> (y+1)(2-y(y-1)-3 (y-1))=0#

#=> (y+1)(5-y^2-2y)=0#

So when #y+1=0#

#sinx+cosx=-1#

#=>1/sqrt2cosx+1/sqrt2sinx=-1/sqrt2#
#=>cos(pi/4)cosx+sin(pi/4)sinx=cos(pi-pi/4)#

#=>cos(x-pi/4)=cos((3pi)/4)#

So

#x-pi/4=2npipm(3pi)/4" where "n inZZ#

Hence

#x=(2n+1)pi" where "n inZZ#

And

#x=2npi-(3pi)/4+pi/4" where "n inZZ#

#=>x=(4n-1)pi/2" where "n inZZ#

Again when #(5-y^2-2y)=0#

#=>y^2+2y-5=0#

#=>y=(-2pmsqrt(2^2-4*1(-5)))/2#

#=>y=(-2pm2sqrt6)/2#

#=>y=(-1pmsqrt6)#

So proceeding in similar way we get

#cos(x-pi/4)=(-1pmsqrt6)/sqrt2# which is #>1or<-1# hence the solution is rejected.