Derivation #sqrt(a+2x)#?

2 Answers
Mar 8, 2018

# d/dx sqrt(a+2x) = 1/sqrt(a+2x) #

Explanation:

Assuming that #a# is a constant, then Using the chain rule, we can write:

# d/dx sqrt(a+2x) = d/dx (a+2x)^(1/2) #

# " " = 1/2(a+2x)^(1/2-1) d/dx(a+2x) #

# " " = 1/2(a+2x)^(-1/2) (2) #

# " " = 1/sqrt(a+2x) #

Mar 8, 2018

If #y=sqrt(a)+2x,then,(dy)/(dx)=0+2=2#.So,we take #y=sqrt(a+2x)#, then , #(dy)/(dx)=1/(sqrt(a+2x)#

Explanation:

#color(red)(d/(dx)(x^n)=n*x^(n-1))#
Now,
#y=sqrt(a+2x)=(a+2x)^(1/2)#
#:.(dy)/(dx)=1/2*(a+2x)^(1/2-1)d/(dx)(a+2x)##=>(dy)/(dx)=1/cancel(2)*(a+2x)^color(red)(-1/2)*cancel(2)##=>(dy)/(dx)=1/((a+2x)^(1/2))=1/(sqrt(a+2x)#