Evaluate double integral #int int (1-x^2/a^2-y^2/b^2)dx dy # over the first quadrant of the ellipse #x^2/a^2+y^2/b^2 = 1#, by using the transformation #x=au# and #y=bv#?

please do this question.
thank you.

1 Answer
Apr 28, 2018

# (piab)/8 #

Explanation:

We seek:

# I = int \ int_R \ (1-x^2/a^2-y^2/b^2) \ dx \ dy #

Where:

# R={(x,y) | x^2/a^2+y^2/b^2 le 1, x,y ge 0} #

Applying the suggested transformation:

# x = au #
# y = bv #

Then we can transform the region of integration:

# S = {(u,v) | (au)^2/a^2 + (bv)^2/b^2 le 1, u,v ge 0} #
# \ \ = {(u,v) | u^2 + v^2 le 1, u,v ge 0} #

And we similarly transform the double integral, and apply the Jacobian:

# I = int \ int_S \ (1-(au)^2/a^2-(bv)^2/b^2) \ | \ du \ dv #

# \ \ = int \ int_S \ (1-u^2-v^2) \ |(partial(x,y))/(partial(u,v)) | \ du \ dv #

And we compute the Jacobian:

# J = |(partial(x,y))/(partial(u,v)) | = | ( (partial x)/(partial u), (partial x)/(partial v)) , ((partial y)/(partial u),(partial y)/(partial v)) | = | ( a, 0) , (0,b) | = ab #

So then:

# I = int \ int_S \ (1-u^2-v^2) \ ab \ du \ dv #

We are now integrating over the first quadrant of a unit circle, and so a further transformation to polar coordinates is appropriate:

# u = rcos theta #
# v = r sin theta #

So we have:

# C = {(r,theta) | 0 le r le 1, 0 le theta le pi/2} #

# I = int \ int_C \ (1-(rcos theta)^2-(rsin theta)^2) \ ab \ r \ dr \ d theta #

# \ \ = int \ int_C \ (1-r^2) \ ab \ r \ dr \ d theta #

# \ \ = int_0^(pi/2) \ int_0^1 \ (1-r^2) \ ab \ r \ dr \ d theta #

If we consider the inner integral:

# int_0^1 \ (1-r^2) \ ab \ r \ dr = ab \ int_0^1 \ r-r^3 \ dr#

# " " = ab \ [r^2/2-r^4/4]_0^1 #

# " " = ab \ (1/2-1/4) #

# " " = (ab)/4 #

So that:

# I = int_0^(pi/2) (ab)/4 d theta #

# \ \ = [(ab)/4 theta]_0^(pi/2) #

# \ \ = (ab)/4pi/2 #

# \ \ = (piab)/8 #