How do I evaluate the indefinite integral #intsin(3x)*sin(6x)dx# ?
1 Answer
It can have two solutions
#=(sin3x)/6-(sin9x)/18+c# , where#c# is a constant OR
#=2/9sin^3(3x)+c# , where#c# is a constantExplanation
#=intsin(3x)*sin(6x)dx# From trigonometric identities,
#sinAsinB=1/2(cos(A-B)-cos(A+B))# Similarly, for the given problem,
#sin(3x)*sin(6x)=1/2(cos(-3x)-cos9x)# As,
#cos(-A)=cos(A)#
#sin(3x)*sin(6x)=1/2(cos3x-cos9x)# integrating both sides,
#intsin(3x)*sin(6x)dx=int1/2(cos3x-cos9x)dx#
#=1/2int(cos3x)dx-1/2int(cos9x)dx#
#=1/2(sin3x)/3-1/2(sin9x)/9+c# , where#c# is a constant
#=(sin3x)/6-(sin9x)/18+c# , where#c# is a constantAnother Method :
#=intsin(3x)*sin(6x)dx#
#=intsin(3x)*2sin(3x)cos(3x)dx#
#=int2sin^2(3x)cos(3x)dx# let's assume
#sin(3x)=t# , then#3cos(3x)dx=dt# therefore,
#=2intt^2/3*dt#
#=2/9*t^3+c# , where#c# is a constant
#=2/9sin^3(3x)+c# , where#c# is a constant