How do I evaluate the indefinite integral #intsin(3x)*sin(6x)dx# ?

1 Answer
Aug 13, 2014

It can have two solutions

#=(sin3x)/6-(sin9x)/18+c#, where #c# is a constant OR

#=2/9sin^3(3x)+c#, where #c# is a constant

Explanation

#=intsin(3x)*sin(6x)dx#

From trigonometric identities,

#sinAsinB=1/2(cos(A-B)-cos(A+B))#

Similarly, for the given problem,

#sin(3x)*sin(6x)=1/2(cos(-3x)-cos9x)#

As, #cos(-A)=cos(A)#

#sin(3x)*sin(6x)=1/2(cos3x-cos9x)#

integrating both sides,

#intsin(3x)*sin(6x)dx=int1/2(cos3x-cos9x)dx#

#=1/2int(cos3x)dx-1/2int(cos9x)dx#

#=1/2(sin3x)/3-1/2(sin9x)/9+c#, where #c# is a constant

#=(sin3x)/6-(sin9x)/18+c#, where #c# is a constant

Another Method :

#=intsin(3x)*sin(6x)dx#

#=intsin(3x)*2sin(3x)cos(3x)dx#

#=int2sin^2(3x)cos(3x)dx#

let's assume #sin(3x)=t#, then #3cos(3x)dx=dt#

therefore,

#=2intt^2/3*dt#

#=2/9*t^3+c#, where #c# is a constant

#=2/9sin^3(3x)+c#, where #c# is a constant