Evaluate the integral. ?

enter image source here

1 Answer

3

Explanation:

Using u-substitution and the rules of anti derivatives.
Let #u=27+2x#
#du=2dx#; #(du)/2=dx# or #du*1/2=dx#
Go back to the original formula and plug that in
#int_0^49(1/root(3)(u^2)du*1/2)#
Using properties of integrals, I can put constants in front of the integral.
#1/2int_0^49(1/root(3)(u^2))du#
Using properties of roots and exponents:
#a^(x/y)=root(y)(a^x)#
and #1/x=x^-1#
Now convert again to
#1/2int_0^49(u^(-2/3))du#
Apply reverse power rule to u and then get
#1/2[3root(3)(u)]_0^49#
Replace u with original function and remember
#int_a^bf(x)dx=F(b)-F(a)#
so then
#1/2[3root(3)(27+2(49))-3root(3)(27+2(0))]# and you should hopefully get 3.
Have fun!