Factor #b^(-2) - 25# over Real numbers?
2 Answers
Feb 11, 2018
Explanation:
#b^-2-25=1/b^2-25#
#1/b^2-25" is a "color(blue)"difference of squares"#
#•color(white)(x)a^2-b^2=(a-b)(a+b)#
#"here "a=1/b" and "b=5#
#rArrb^-2-25=(1/b-5)(1/b+5)#
Feb 11, 2018
Explanation:
#"take out a "color(blue)"common factor of "b^-2#
#b^-2(1-25b^2)#
#=b^-2(1-5b)(1+5b)larrcolor(blue)"difference of squares"#
#"as another possibility"#