Factor #b^(-2) - 25# over Real numbers?

2 Answers
Feb 11, 2018

#(1/b-5)(1/b+5)#

Explanation:

#b^-2-25=1/b^2-25#

#1/b^2-25" is a "color(blue)"difference of squares"#

#•color(white)(x)a^2-b^2=(a-b)(a+b)#

#"here "a=1/b" and "b=5#

#rArrb^-2-25=(1/b-5)(1/b+5)#

Feb 11, 2018

#b^-2(1-5b)(1+5b)#

Explanation:

#"take out a "color(blue)"common factor of "b^-2#

#b^-2(1-25b^2)#

#=b^-2(1-5b)(1+5b)larrcolor(blue)"difference of squares"#

#"as another possibility"#