Factorise #3x^2+2x-3# ?

2 Answers
May 13, 2018

#y = 3(x + (1 - sqrt10)/3)(x + (1 + sqrt10)/3)#

Explanation:

#y = 3x^2 + 2x - 3#
#D = d^2 = b^2 - 4ac = 4 + 36 = 40# --> #d = +- 2sqrt10#
There are 2 real roots:
#x1 = -b/(2a) +- d/(2a) = - 2/6 +- (2sqrt10)/6 = - (1 - sqrt10)/3#,
#x2 = - (1 + sqrt10)/3#
Factored form:
#y = a(x - x1)(x - x2)#
#y = 3(x + (1 - sqrt10)/3)(x + (1 + sqrt10)/3)#

May 13, 2018

#3(x+(1-sqrt(10))/3) (x+(1+sqrt(10))/3)#

Solution in great detail.

Explanation:

Set #y=0=3x^2+2x-3" ".........................Equation(1)#

Compare to #y=ax^2+bx+c#

#x=(-b+-sqrt(b^2-4ac))/(2a)#

Set #a=3; b=2; c=-3#

#=> x=(-2+-sqrt(2^2-4(3)(-3)))/(2(3))#

#x=-1/3+-sqrt(40)/6#

#x=-1/3+-(cancel(2)^1sqrt(10))/cancel(6)^3#

#x=-1/3+-sqrt(10)/3#

#x=(-1+sqrt(10))/3 and x=(-1-sqrt(10))/3#

#(x+(1-sqrt(10))/3) (x+(1+sqrt(10))/3) " "..............Equation(2)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Testing "Equation(2))#

#x (x+(1+sqrt(10))/3)color(white)("d") +color(white)("d")(1-sqrt(10))/3 (xcolor(white)("d")+color(white)("ddd")(1+sqrt(10))/3)#

#x^2+x/3+cancel((xsqrt(10))/3) color(white)("ddd")+color(white)("ddd")x/3-cancel((xsqrt(10))/3)+color(white)("d")(1^2-(sqrt(10))^2)/9#

#x^2+(2x)/3+1/9-10/9#

#x^2+(2x)/3-1#

So #Equation(2)# is not the same value as #Equation(1)# To make it do so multiply everything by 3

#y=3(x^2+(2x)/3-1) = 3x^2+2x-3 color(red)(larr" As required"#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Thus the answer is:

#3(x+(1-sqrt(10))/3) (x+(1+sqrt(10))/3)" ".........Equation(2_a)#