Find #dy/dx# of #y=sin(cx)sin^c(x)#?

1 Answer
Mar 20, 2018

#dy/dx=csin(cx)cos(x)sin^(c-1)(x)+csin^c(x)cos(cx)=csin(x)^(c-1)sin(cx+x)#

Explanation:

For a given function #y=f(x)=uv# where #u# and #v# are both functions of #x# we get:
#dy/dx=u'v+v'u#

#u=sin(cx)#
#u'=c cos(cx)#

#v=sin^c(x)#
#v'=c cos(x)sin^(c-1)(x)#

#dy/dx=csin(cx)cos(x)sin^(c-1)(x)+csin^c(x)cos(cx)=csin(x)^(c-1)sin(cx+x)#