Find the initial value problem in #dy/dx=(y^2+4x^2)/(4xy)#?

Addition information #y(1)=2#

1 Answer
May 12, 2018

#y= sqrt(4/3x^2+8/3sqrtx)#

Explanation:

Given: #dy/dx=(y^2+4x^2)/(4xy), y(1)=2#

Rewrite in the form of Bernoulli's equation:

#dy/dx - 1/(4x)y= x/y#

Prepare for a variable substitution by multiplying both sides by #2y#:

#2ydy/dx - 1/(2x)y^2= 2x#

Let #u = y^2#, then #(du)/dx= 2ydy/dx#:

#(du)/dx - 1/(2x)u= 2x#

This type of differential equation is known to have an integrating factor of:

#I(x) = e^(int -1/(2x)dx)#

#I(x) = e^(-1/2ln(x))#

#I(x) = e^(ln(1/sqrtx))#

#I(x) = 1/sqrtx#

Multiply both sides by the integrating factor:

#(du)/dx1/sqrtx - 1/2x^(-3/2)u= 2sqrtx#

We know that the left side integrates to #I(x)u# and the right side is trivial:

#u/sqrtx= 4/3x^(3/2)+C#

#u= 4/3x^2+Csqrtx#

Reverse the substitution #u = y^2#:

#y^2= 4/3x^2+Csqrtx#

#y= +-sqrt(4/3x^2+Csqrtx)#

Use the boundary condition #y(1) = 2# to determine #+-# and the value of C:

#2= +-sqrt(4/3 1^2+Csqrt1)#

It must be #+#:

#2= sqrt(4/3 1^2+Csqrt1)#

#4 = 4/3+C#

#4 = 4/3+C#

#C = 8/3#

#y= sqrt(4/3x^2+8/3sqrtx)#