Find x and y two real numbers with #x>0# and #y>0# and #x+y=pi/4# and #tan(x)tan(y)=3-2sqrt2#?

1 Answer
Feb 26, 2018

#x = pi/8# and #y = pi/8#

Explanation:

Given:

#tan(x)tan(y)=3-2sqrt2" [1]"#

#x+y = pi/4" [2]"#

Write equation [2] as y in terms of x:

#tan(x)tan(y)=3-2sqrt2" [1]"#

#y = pi/4-x" [2.1]"#

Substitute equation [2.1] into equation [1]:

#tan(x)tan(x-pi/4)=3-2sqrt2" [1.1]"#

Use the identity #tan(A-B) = (tan(A)-tan(B))/(1+tan(A)tan(B))#

#tan(x)(tan(pi/4)-tan(x))/(1+tan(pi/4)tan(x))=3-2sqrt2" [1.2]"#

Use the fact #tan(pi/4) = 1#:

#tan(x)(1-tan(x))/(1+tan(x))=3-2sqrt2" [1.3]"#

Distribute #tan(x)# and multiply both sides by the denominator:

#-tan^2(x)+tan(x)= (3-2sqrt2)(1+tan(x))" [1.4]"#

Multiply by -1:

#tan^2(x)-tan(x)= -(3-2sqrt2)(1+tan(x))" [1.5]"#

Make the equation equal 0:

#tan^2(x)-tan(x)+(3-2sqrt2)(1+tan(x)) = 0" [1.6]"#

Distribute #(3-2sqrt2)#:

#tan^2(x)-tan(x)+3-2sqrt2+(3-2sqrt2)tan(x) = 0" [1.7]"#

Combine like terms:

#tan^2(x)+(2-2sqrt2)tan(x)+3-2sqrt2 = 0" [1.8]"#

Use the quadratic formula but only the positive value because we are told that #x > 0#:

#tan(x) =(-(2-2sqrt2)+sqrt((2-2sqrt2)^2-4(3-2sqrt2)))/2#

#x = tan^-1((-(2-2sqrt2)+sqrt((2-2sqrt2)^2-4(3-2sqrt2)))/2)#

#x = pi/8#

Use equation [2.1] to find the value of y:

#y = pi/4-pi/8#

#y = pi/8#