For complex numbers z and #omega#, prove that #|z|^2omega -|omega|^2z = z - omega# if and only if #z = omega# and #z. baromega = 1#?

1 Answer
Feb 14, 2018

See below.

Explanation:

From

#|z|^2omega -|omega|^2z = z - omega# and rearranging

#z/(1+absz^2) = omega/(1+absomega^2) rArr z = omega#

and now

#|z|^2omega -|omega|^2z = z - omega# then

#z bar z omega - omega bar omega z = z - omega# or

#omega(z bar z-bar omega z) = z-omega#

now multiplying both sides for #bar z#

#bar z omega(abs z^2-bar omega z) = abs z^2-barz omega#

now as #bar z omega = omega bar z# we have

#bar z omega = (abs z^2-barz omega)/(abs z^2-bar omega z) = 1#