For: https://socratic.org/users/jeish-g The points with coordinates (-1,4) and (1,-8) lie on a curve which has the rule of the form #y=aroot(3)(x)+b#. Find the values of #a and b#.?

2 Answers
Jan 4, 2018

#a=-6,b=-2#

Explanation:

We have two points for which we know the #x# and #y# coordinates. We can just plug these two points into the equation and solve for #a# and #b#:
#-8=aroot(3)(1)+b#

#4=aroot(3)(-1)+b#

We can subtract these two equations from each other to cancel the #b#'s:
#-8-4=aroot(3)(1)+b-(aroot(3)(-1)+b)#

#-12=a*1+b-(-a+b)#

#-12=a+b+a-b#

#-12=2a#

#a=-12/2=-6#

Now we can plug in #a=-6# and solve for #b#:
#4=-6root(3)(-1)+b#

#4=6+b#

#b=4-6=-2#

So, the final equation is #y=-6root(3)(x)-2#

Jan 4, 2018

Reworkded:

#a=-6#
#b=-2#

Explanation:

#color(brown)("Formatting tip - write "color(white)("d")" hash y = a root(3)(x)+b hash ")#
#color(brown)( "giving: ............."color(white)("ddddddddddddd") y=a root(3)(x)+b #

Have a look at: https://socratic.org/help/symbols
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Set point 1 as #P_1->(x_1,y_1)=(-1,4)#
Set point 2 as #P_2->(x_2,y_2)=(1,-8) color(red)( larr" +8 corrected to -8")#

Given:# color(white)("d") y=aroot(3)(x)+b#

#P_1->+4=aroot(3)(-1)+b" "...............Equation(1)" checked"#
#P_2->color(white)(".")color(red)(-8)=aroot(3)(+1)+b" "...............Equation(2)" corrected"#

#color(blue)("Determine the value of "b)#

Note that:
#(-1)xx(-1)xx(-1)color(white)("d")=color(white)("d")(-1)" so "root(3)(-1)=-1#

Note that #root(3)(+1)=1#

So we have:

#color(white)("d")+4=-a+b" "....................Equation(1_a)#
#ul(color(white)("d")-8=+a+b)" "....................Equation(2_a)#
#color(green)(color(white)("d")-4=color(white)(".dd")0+2b) larr" "Eqn(1_a)+Eqn(2_a)#

Divide both sides by #color(red)(2)#

#color(green)(-4/color(red)(2)=(2b)/color(red)(2))#

#-2=bcolor(white)("d")# more formally presented as: #b=-2#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the value of "a)#

Choosing #Equation(2_a)# substitute for #b# where #color(red)(b=-2)#

#color(green)(-8=+a+color(red)(b) color(white)("ddd") -> color(white)("ddd")-8=a+(color(red)(-2)))#

Add 2 to both sides

#color(green)(color(white)("dddddddddddddd")->color(white)("ddd")-6=a)#

More formally #a=-6#

color(white)("d")