Four different sets of objects contain 3, 5, 6, and 8 objects, respectively. How many unique combinations can be formed by picking one object from each set?

1 Answer
Write your answer here...
Start with a one sentence answer
Then teach the underlying concepts
Don't copy without citing sources


Write a one sentence answer...



Explain in detail...


I want someone to double check my answer

Describe your changes (optional) 200


This answer has been featured!

Featured answers represent the very best answers the Socratic community can create.

Learn more about featured answers

Jul 6, 2016




Let's first answer this by simplifying the question a bit and ask "How many different combinations can be made from 2 different sets of objects - one containing 3 and the other containing 5."

So that gives us Set A with 3 things and Set B with 5 things.

If I pull out the first object from Set A, let's call that Object A1, I can then pull out Objects B1, B2, B3, B4, and B5 - and so can make 5 different unique combinations.

And then I can pull out Object A2 and do it again (so make 5 more unique combinations), and then A3 and do it yet again (for yet another 5 unique combinations).

In the end, we end up with 15 unique combinations.

We can find this number by multiplying the number of objects in A and the number in B: #3*5=15#

We can do that with larger numbers of sets and groups as well. For instance, in the question above, we have 4 sets with 3, 5, 6, and 8 objects in them. So the number of unique combinations can be found by multiplying the number of objects in each group together:

#("Set A")("Set B")("Set C")("Set D")#


Was this helpful? Let the contributor know!
Impact of this question
3107 views around the world
You can reuse this answer
Creative Commons License