Given #{r,s,u,v} in RR^4# Prove that #min {r-s^2,s-u^2,u-v^2,v-r^2} le 1/4#?
1 Answer
Sep 8, 2016
See explanation...
Explanation:
First note that if
#t-t^2 = 1/4-(1/4-t+t^2) = 1/4-(t-1/2)^2#
so the maximum
Let:
#{ (a = r-1/2), (b = s-1/2), (c = u-1/2), (d = v-1/2) :}#
Then:
#{ (r-s^2-1/4 = a+1/2 - (b+1/2)^2 - 1/4 = a-b-b^2), (s - u^2-1/4 = b+1/2 - (c+1/2)^2 - 1/4 = b-c-c^2), (u - v^2-1/4 = c+1/2 - (d+1/2)^2 - 1/4 = c-d-d^2), (v - r^2-1/4 = d+1/2 - (a+1/2)^2 - 1/4 = d-a-a^2) :}#
Note that
#a >= b >= c >= d >= a#
Hence