Given #sin30^circ=1/2# and #tan30^circ=sqrt3/3#, how do you find #cos30^circ#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Narad T. Jan 20, 2017 The answer is #=sqrt3/2# Explanation: We use #tantheta=sintheta/costheta# #sin30º=1/2# #tan30º=sqrt3/3# #cos30º=(sin30º)/(tan30º)=(1/2)/(sqrt3/3)=(1/2)/(1/sqrt3)=sqrt3/2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 4369 views around the world You can reuse this answer Creative Commons License