# How can you rewrite this trigonometric expression as an algebraic expression?

## cos(sin^-1(u)-cos^-1(v)

Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

2
Mar 9, 2018

$\cos \left({\sin}^{- 1} u - {\cos}^{- 1} v\right) = v \sqrt{1 - {u}^{2}} + u \sqrt{1 - {v}^{2}}$

#### Explanation:

Let ${\sin}^{- 1} u = A$ and ${\cos}^{- 1} v = B$

then $\sin A = u$, which means $\cos A = \sqrt{1 - {u}^{2}}$

and $\cos B = v$, which means $\sin B = \sqrt{1 - {v}^{2}}$

Hence, $\cos \left({\sin}^{- 1} u - {\cos}^{- 1} v\right)$

= $\cos \left(A - B\right)$

= $\cos A \cos B + \sin A \sin B$

= $\sqrt{1 - {u}^{2}} \times v + u \times \sqrt{1 - {v}^{2}}$

= $v \sqrt{1 - {u}^{2}} + u \sqrt{1 - {v}^{2}}$

• 14 minutes ago
• 32 minutes ago
• 38 minutes ago
• 55 minutes ago
• 2 minutes ago
• 6 minutes ago
• 6 minutes ago
• 11 minutes ago
• 12 minutes ago
• 14 minutes ago
• 14 minutes ago
• 32 minutes ago
• 38 minutes ago
• 55 minutes ago