How do I find the derivative of #x^8*ln(x)#?
1 Answer
Nov 15, 2016
Explanation:
differentiate using the
#color(blue)"product rule"#
#" If " f(x)=g(x).h(x)" then"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=g(x).h'(x)+h(x).g'(x))color(white)(2/2)|)))# here
#g(x)=x^8rArrg'(x)=8x^7# and
#h(x)=lnxrArrh'(x)=1/x#
#rArrf'(x)=(x^8 xx1/x)+(lnx xx8x^7)#
#=x^7+8x^7lnx=x^7(1+8lnx)#