How do i integrate #int (1-x^2)/(4+x^2) dx#?

1 Answer
Feb 23, 2018

Given: #int (1-x^2)/(4+x^2) dx#

Factor out -1 from the numerator:

#int (1-x^2)/(4+x^2) dx = -int (x^2-1)/(x^2+4) dx#

Add zero to the numerator in the form of #+4-4#:

#int (1-x^2)/(4+x^2) dx = -int (x^2+4-4-1)/(x^2+4) dx#

Combine the negatives:

#int (1-x^2)/(4+x^2) dx = -int (x^2+4-5)/(x^2+4) dx#

Separate into two fractions:

#int (1-x^2)/(4+x^2) dx = -int (x^2+4)/(x^2+4)-5/(x^2+4) dx#

The first fraction becomes 1:

#int (1-x^2)/(4+x^2) dx = -int 1-5/(x^2+4) dx#

Separate into two integrals:

#int (1-x^2)/(4+x^2) dx = int 5/(x^2+4) dx -intdx#

Bring the 5 outside the integral:

#int (1-x^2)/(4+x^2) dx = 5int 1/(x^2+4) dx -intdx#

Both integrals are well known:

#int (1-x^2)/(4+x^2) dx = 5/2tan^-1(x/2)-x+C#