How do I solve: #tan(x)+cot(x)=4sin(2x)# using double angle or half angle identities?

2 Answers
Apr 8, 2018

# x=k*pi/2+(-1)^k*(+-pi/8), k in ZZ#.

Explanation:

#tanx+cotx=4sin2x#.

#:. sinx/cosx+cosx/sinx=4sin2x#.

#:. (sin^2x+cos^2x)/(sinxcosx)=4sin2x#.

#:.1/(sinxcosx)xx2/2=4sin2x#.

#:.2/(2sinxcosx)=4sin2x#.

#:.2/(sin2x)=4sin2x#.

#:. 2/4=1/2=sin^2 2x#.

#:. sin2x=+-1/sqrt2=sin(+-pi/4)#.

Since, #sinu=sinv rArr u=kpi+(-1)^k*v, k in ZZ#, we have,

#2x=kpi+(-1)^k*(pmpi/4), k in ZZ#, or,

# x=k*pi/2+(-1)^k*(+-pi/8), k in ZZ#, is the desired solution.

Apr 8, 2018

#x = kpi/2 -pi/8# and #x= kpi/2 + pi/8, k in ZZ#

Explanation:

Given: #tan(x)+cot(x)=4sin(2x)#

Substitute #tan(x) = sin(x)/cos(x)# and #cot(x) = cos(x)/sin(x)#

#sin(x)/cos(x)+cos(x)/sin(x)=4sin(2x)#

Avoid any roots that would cause division by 0 by adding the following restrictions:

#sin(x)/cos(x)+cos(x)/sin(x)=4sin(2x), cos(x)!=0, sin(x)!=0#

We know that the two restrictions occur at integer multiples of #pi/2#

#sin(x)/cos(x)+cos(x)/sin(x)=4sin(2x), x!=npi/2, n in ZZ#

Substitute #sin(2x) = 2sin(x)cos(x)#:

#sin(x)/cos(x)+cos(x)/sin(x)=4(2sin(x)cos(x)), x!=npi/2, n in ZZ#

Eliminate the denominators by multiplying both sides by #sin(x)cos(x)#:

#sin^2(x)+cos^2(x)=4(2sin(x)cos(x))sin(x)cos(x), x!=npi/2, n in ZZ#

Substitute #sin^2(x)+cos^2(x) = 1#

#1=4(2sin(x)cos(x))sin(x)cos(x), x!=npi/2, n in ZZ#

Simplify the right side:

#1= 8sin^2(x)cos^2(x), x!=npi/2, n in ZZ#

Divide both sides by 2:

#4sin^2(x)cos^2(x) = 1/2, x!=npi/2, n in ZZ#

Write the left side as a single square:

#(2sin(x)cos(x))^2 = 1/2, x!=npi/2, n in ZZ#

Substitute #2sin(x)cos(x) = sin(2x)#

#sin^2(2x) = 1/2, x!=npi/2, n in ZZ#

#sin^2(2x) = 1/2, x!=npi/2, n in ZZ#

Take the square root of both sides:

#sin(2x) = +-sqrt(1/2), x!=npi/2, n in ZZ#

Take the inverse sine of both sides:

#2x = sin^-1(-sqrt(1/2))# and #2x=sin^-1(sqrt(1/2)), x!=npi/2, n in ZZ#

#2x = -pi/4# and #2x=pi/4, x!=npi/2, n in ZZ#

We know that this repeats at integer multiples of #pi# and it will not violate the domain restrictions:

#2x = kpi -pi/4# and #2x= kpi + pi/4, k in ZZ#

Divide both equations by 2:

#x = kpi/2 -pi/8# and #x= kpi/2 + pi/8, k in ZZ#