How do solve without using derivative?

#lim xrarr0 (sin(x^3+x^2-x)+sinx)/x#

1 Answer
Dec 16, 2016

#lim_(x->0)frac (sin(x^3+x^2-x)+sinx) x =0#

Explanation:

You can resolve this limit without using derivatives by re-conducing it to the known limit:

#lim_(x->0)sinx/x=1#

We can proceed in this way:

#frac (sin(x^3+x^2-x)+sinx) x = frac (sin(x^3+x^2-x) )x + frac (sinx) x = frac (sin(x^3+x^2-x) ) (x^3+x^2-x)* frac (x^3+x^2-x) x+ frac (sinx) x = frac (sin(x^3+x^2-x) ) (x^3+x^2-x)* (x^2+x-1) + frac (sinx) x #

Thus:
#lim_(x->0)frac (sin(x^3+x^2-x)+sinx) x =lim_(x->0)frac (sin(x^3+x^2-x) ) (x^3+x^2-x)* (x^2+x-1) + frac (sinx) x = 1*(-1)+1=0#