How do you add #(8-8i)+(-7-i)# in trigonometric form?

1 Answer
Feb 15, 2017

#1-9i = sqrt(82)(cos(arctan(-9)) + i sin ((arctan (-9)))#

Explanation:

Add them in rectangular form #(a + bi)# and then convert to trigonometric form:

  1. Combine the like terms: #(8 + -7) + (-8i + -i) = 1-9i#
  2. #r = sqrt (1^2 + (-9)^2) = sqrt (82)#
  3. #theta = arctan(b/a) = arctan (-9/1) = arctan(-9)#
  4. #z = r(cos theta + i sin theta)#
    #= sqrt(82)(cos(arctan(-9)) + i sin ((arctan (-9)))#