How do you add #\frac { a ^ { 2} - 5a } { a - 3} + \frac { 4a - 6} { a - 3}#?

1 Answer
Jun 23, 2017

Expression #= (a+2)#
#{a!=3}#

Explanation:

Expression #= (a^2-5a)/(a-3) + (4a-6)/(a-3)#

Since both terms have the same denominator we can simply sum the numerators.

#:.# Expression #= (a^2-5a+4a-6)/(a-3)#

#= (a^2-a-6)/(a-3)#

#=((a-3)(a+2))/(a-3)#

#=(cancel((a-3))(a+2))/cancel(a-3)# #{a!=3}#

#=(a+2)#