How do you calculate #Ln(0.84)#?
1 Answer
Feb 10, 2017
Explanation:
Let us start with:
#ln(1+x) = x/1-x^2/2+x^3/3-x^4/4+...#
Hence:
#ln(1-x) = -x/1-x^2/2-x^3/3-x^4/4-...#
Putting
#ln(0.84) = ln(1-0.16)#
#color(white)(ln(0.84)) = -0.16/1-0.16^2/2-0.16^3/3-0.16^4/4-...#
#color(white)(ln(0.84)) = -0.16/1-0.0256/2-0.004096/3-0.00065536/4-...#
#color(white)(ln(0.84)) = -0.16-0.0128-0.001365bar(3)-0.00016384-...#
#color(white)(ln(0.84)) ~~ -0.1743#