How do you derive taylor polynomial for #x/(1+x)#?
2 Answers
The Taylor polynomial is just another name for the full Taylor series truncated at a finite
Some common errors are:
- Letting
#x = a# within the#(x - a)^n# term. - Taking the derivatives at the same time as writing out the series, which is not necessarily wrong, but in my opinion, it allows more room for silly mistakes.
- Not plugging
#a# in for the#n# th derivative, or plugging in#0# .
The formula to write out the series was:
#sum_(n=0)^(oo) (f^((n))(a))/(n!)(x-a)^n#
So, we would have to take some derivatives of
#f^((0))(x) = f(x) = x/(1 + x)#
#f'(x) = x*(-(1 + x)^(-2)) + 1/(1+x)#
#= -x/(1 + x)^2 + 1/(1+x)#
#= -x/(1 + x)^2 + (1 + x)/(1+x)^2#
#= 1/(1+x)^2#
#f''(x) = -2(1 + x)^3 = -2/(1+x)^3#
#f'''(x) = 6/(1 + x)^4#
#f''''(x) = -24/(1 + x)^5#
etc.
So plugging things in gives (truncated at
#=> (f^((0))(a))/(0!)(x-a)^0 + (f'(a))/(1!)(x-a)^1 + (f''(a))/(2!)(x-a)^2 + (f'''(a))/(3!)(x-a)^3 + (f''''(a))/(4!)(x-a)^4 + . . . #
#= a/(1 + a) + 1/(1+a)^2(x-a) + (-2/(1+a)^3)/(2)(x-a)^2 + (6/(1+a)^4)/(6)(x-a)^3 + (-24/(1 + a)^5)/(24)(x-a)^4 + . . . #
#= color(blue)(a/(1 + a) + 1/(1+a)^2(x-a) - 1/(1+a)^3(x-a)^2 + 1/(1+a)^4(x-a)^3 - 1/(1 + a)^5(x-a)^4 + . . . )#
We can use the basic geometric series centered at
#1/(1-(x-a))=sum_(n=0)^oo(x-a)^n#
Or:
#1/(1+(a-x))=sum_(n=0)^oo(x-a)^n#
Then:
#(a-x)/(1+(a-x))=(a-x)sum_(n=0)^oo(x-a)^n#
Flipping the sign and moving into the series:
#(a-x)/(1+(a-x))=-sum_(n=0)^oo(x-a)^(n+1)#
If we let