How do you determine if # tanx +secx # is an even or odd function?

1 Answer
May 31, 2016

#tan(x)+sec(x)# is neither even nor odd.

Explanation:

  • #f(x)# is an even function if it satisfies #f(-x) = f(x)# for all #x# in its domain.
  • #f(x)# is an odd function if it satisfies #f(-x) = -f(x)# for all #x# in its domain.

We find:

  • #tan(-x) = -tan(x)# so #tan(x)# is a non-zero odd function.
  • #sec(-x) = 1/cos(-x) = 1/cos(x) = sec(x)# so #sec(x)# is a non-zero even function.

Hence #tan(x) + sec(x)# is neither odd nor even, being the sum of a non-zero odd function and a non-zero even function.

For example:

#tan(-pi/4)+sec(-pi/4) = -1+sqrt(2)#

#tan(pi/4)+sec(pi/4) = 1+sqrt(2)#

So:

#tan(-pi/4)+sec(-pi/4) != tan(pi/4)+sec(pi/4)#

#tan(-pi/4)+sec(-pi/4) != -(tan(pi/4)+sec(pi/4))#