How do you determine if # tanx +secx # is an even or odd function?
1 Answer
May 31, 2016
Explanation:
#f(x)# is an even function if it satisfies#f(-x) = f(x)# for all#x# in its domain.#f(x)# is an odd function if it satisfies#f(-x) = -f(x)# for all#x# in its domain.
We find:
#tan(-x) = -tan(x)# so#tan(x)# is a non-zero odd function.#sec(-x) = 1/cos(-x) = 1/cos(x) = sec(x)# so#sec(x)# is a non-zero even function.
Hence
For example:
#tan(-pi/4)+sec(-pi/4) = -1+sqrt(2)#
#tan(pi/4)+sec(pi/4) = 1+sqrt(2)#
So:
#tan(-pi/4)+sec(-pi/4) != tan(pi/4)+sec(pi/4)#
#tan(-pi/4)+sec(-pi/4) != -(tan(pi/4)+sec(pi/4))#