How do you differentiate #cos(x^4)-2sinx#?

1 Answer
Feb 23, 2017

#-4x^3sin(x^4)-2cosx#

Explanation:

Using #color(blue)"standard derivatives"#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(d/dx(sinx)=cosx,d/dx(cosx)=-sinx)color(white)(2/2)|)))#

differentiate the first term using the #color(blue)"chain rule"#

#• d/dx[cos(f(x))]=-sin(f(x))xxf'(x)#

#rArrd/dx[cos(x^4)-2sinx]#

#=-sin(x^4)xxd/dx(x^4)-2cosx#

#=-4x^3sin(x^4)-2cosx#