How do you differentiate #e^(2x^2-4x) # using the chain rule? Calculus Basic Differentiation Rules Chain Rule 1 Answer P dilip_k Mar 13, 2016 #=4(e^(2x^2-4x))(x-1)# Explanation: #d/(dx)(e^(2x^2-4x))=(e^(2x^2-4x))d/(dx)(2x^2-4x)# #=(e^(2x^2-4x))(d/(dx)(2x^2)-d/(dx)(4x))# #=(e^(2x^2-4x))(2*2x^(2-1)-4))# #=(e^(2x^2-4x))(4x-4)# #=4(e^(2x^2-4x))(x-1)# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 3078 views around the world You can reuse this answer Creative Commons License