How do you differentiate #f(x)=csc^2(3x ) # using the chain rule?
1 Answer
Feb 11, 2018
Explanation:
#"given "f(x)=g(h(x))" then"#
#f'(x)=g'(h(x))xxh'(x)larrcolor(blue)"chain rule"#
#f(x)=csc^2(3x)=(csc(3x))^2#
#f'(x)=2csc(3x)xxd/dx(csc(3x))xxd/dx(3x)#
#color(white)(f'(x))=2csc(3x)xx-csc(3x)cot(3x)xx3#
#color(white)(f'(x))=-6csc^2(3x)cot(3x)#