How do you differentiate #f(x)=csc(2x-x^3) # using the chain rule? Calculus Basic Differentiation Rules Chain Rule 1 Answer sente Jan 19, 2016 #f'(x)=csc(2x-x^3)cot(2x-x^3)(3x^2-2)# Explanation: Using the chain rule : #f'(x) = d/dxcsc(2x-x^3)# #= -csc(2x-x^3)cot(2x-x^3)(d/dx2x-x^3)# #= -csc(2x-x^3)cot(2x-x^3)((d/dx2x)-(d/dxx^3))# #= -csc(2x-x^3)cot(2x-x^3)(2-3x^2)# #=csc(2x-x^3)cot(2x-x^3)(3x^2-2)# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1330 views around the world You can reuse this answer Creative Commons License