How do you differentiate f(x)=sec(3x^3-x^2 ) using the chain rule?
3 Answers
Explanation:
Explanation:
Because derivative of
Explanation:
•color(white)(x)d/dx(secx)=secxtanx
"Differentiate using the "color(blue)"chain rule"
"Given "f(x)=g(h(x))" then"
f'(x)=g'(h(x))xxh'(x)larrcolor(blue)"chain rule"
f(x)=sec(3x^3-x^2)
rArrf'(x)=sec(3x^3-x^2)tan(3x^3-x^2)xxd/dx(3x^3-x^2)
color(white)(rArrf'(x))=(9x^2-2x)sec(3x^3-x^2)tan(3x^3-x^2)