How do you differentiate f(x)=sec(e^(x)-3x ) f(x)=sec(ex3x) using the chain rule?

1 Answer
Aug 3, 2016

f'(x)=(e^x-3)sec(e^x-3x)tan(e^x-3x)

Explanation:

f(x)=sec(e^x-3x)
enter image source here
Here outside functions is sec , Derivative of sec(x) is sec(x)tan(x).

#f'(x) =sec(e^x-3x)tan(e^x-3x) derivative of (e^x-3x)

f'(x) =sec(e^x-3x)tan(e^x-3x) (e^x-3)

f'(x)=(e^x-3)sec(e^x-3x)tan(e^x-3x)