How do you differentiate # f(x)= sqrt((xe^x+4)^3 # using the chain rule.? Calculus Basic Differentiation Rules Chain Rule 1 Answer Monzur R. Jan 30, 2017 #f'(x)=3/2e^x(1+x)(sqrt(xe^x+4))# Explanation: #f(x)=sqrt((xe^x+4)^3)=((xe^x+4)^(3))^(1/2))=(xe^x+4)^(3/2)# Chain rule: #[f(x)]^n=n[f(x)]^(n-1)xxf'(x)# Product rule: #d/dxuv=uv'+vu'# #f'(x)=3/2(xe^x+4)^(1/2)xx(e^x+xe^x)=# #3/2e^x(1+x)sqrt(xe^x+4)# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1338 views around the world You can reuse this answer Creative Commons License