How do you differentiate #f(x)=tan(1-3x) # using the chain rule?

2 Answers
Jan 24, 2016

Answer:

# - 3 sec^2(1 - 3x ) #

Explanation:

differentiating using the 'chain rule ' :

# f'(x) = sec^2(1 - 3x ) . d/dx (1 - 3x ) #

# = sec^2 (1 - 3x ) .(- 3 ) = - 3 sec^2 (1 - 3x ) #

Jan 24, 2016

Answer:

#f'(x)=-3sec^2(1-3x)#

Explanation:

Using the general rule #d/dxtan[u(x)]=sec^2u*(du)/dx#,

we get #d/dxtan(1-3x)=-3sec^2(1-3x)#