How do you differentiate #f(x)=xe^xsinx#?

1 Answer
Nov 20, 2017

Your regular multiplication rule

Explanation:

We just use the general rule of multiplicative derivatives.
#f(x)=g(x)h(x)#
#f'(x)=g'(x)h(x)+g(x)h'(x)#
The same is standard for a three part function
#f(x)=g(x)h(x)i(x)#
#f'(x)=g'(x)h(x)i(x)+g(x)h'(x)i(x)+g(x)h(x)i'(x)#
We can get the answer simply using that statement.

#f(x)=xe^xsinx#
#f'(x)=(x)'e^xsinx+x(e^x)'sinx+xe^x(sinx)'#
#f'(x)=e^xsinx+xe^xsinx+xe^xcosx#