How do you differentiate #ln(x^2+1)^(1/2)#?
1 Answer
Explanation:
You need to use the chain rule twice. We do this from inside out.
First let
We differentiate
#frac{"d"w}{"d"x} = 2x#
Next, let
To differentiate
#frac{"d"v}{"d"x} = frac{"d"v}{"d"w} * frac{"d"w}{"d"x}#
#= frac{"d"}{"d"w}(ln(w)) * (2x)#
#= 1/w * (2x)#
#= (2x)/(x^2 + 1)#
Finally, we let
#frac{"d"u}{"d"x} = frac{"d"u}{"d"v} * frac{"d"v}{"d"x}#
#= frac{"d"}{"d"v}(sqrt(v)) * (2x)/(x^2 + 1)#
#= frac{1}{2sqrt(v)} * (2x)/(x^2 + 1)#
#= frac{1}{2sqrt(ln(x^2+1))} * (2x)/(x^2 + 1)#
#= frac{x}{x^2 + 1} * ln(x^2+1)^{-1/2}#