How do you differentiate #z=A/y^10+Be^y#?

1 Answer
Nov 25, 2016

#dz/dy=-A/(10n^11)+Be^y#

Explanation:

Assuming #z# is a function and #A# and #B# are constants, we see that:

#dz/dy=d/dy(A/y^10)+d/dy(Be^y)#

Pulling out the constants:

#dz/dy=Ad/dy(y^-10)+Bd/dy(e^y)#

Now using #d/dy(y^n)=ny^(n-1)# and #d/dy(e^y)=e^y#, we see that:

#dz/dy=A(-10n^(-10-1))+B(e^y)#

#dz/dy=-(10A)/(n^11)+Be^y#