How do you differentuate #y^2=sin^4(2x)+ cos^4(2x)#?

1 Answer
May 23, 2018

#(dy)/(dx)=(4sin^3(2x)cos(2x))/y-(4cos^3(2x)sin(2x))/y#

Explanation:

By using implicit differentiation and chain rule

#y^2=sin^4(2x)+cos^4(2x)#

#2ytimes(dy)/(dx)=4sin^3(2x)times2cos(2x)-4cos^3(2x)times2sin(2x)#

#2ytimes(dy)/(dx)=8sin^3(2x)cos(2x)-8cos^3(2x)sin(2x)#

#(dy)/(dx)=(4sin^3(2x)cos(2x))/y-(4cos^3(2x)sin(2x))/y#

For the chain rule, just to expand on what I did:

let #z=sin^4(2x)#
and let #u=2x#
so #(du)/(dx)=2#

Okay, so #z=sin^4u#
#(dz)/(du)=4sin^3utimescosu=4sin^3ucosu#

Now #(dz)/(dx)=(dz)/(du)times(du)/(dx)#
So, #(dz)/(dx)=4sin^3ucosutimes2#

#(dz)/(dx)=8sin^3ucosu#
#(dz)/(dx)=8sin^3(2x)cos(2x)#

I applied the same format for #cos^4(2x)#