How do you divide #(-1+5i)/(-8-7i)#?

1 Answer

Answer:

#(-1+5i)/(-8-7i)=-27/113-(47i)/113#

Explanation:

To do the division, we have to make use of the conjugate of the complex number at the numerator and denominator. The conjugate of #-8-7i# is #-8+7i#

#(-1+5i)/(-8-7i)=(-1+5i)/(-8-7i)*(-8+7i)/(-8+7i)#

#(-1+5i)/(-8-7i)=(-1*(-8+7i)+5i*(-8+7i))/(64+49)#

#(-1+5i)/(-8-7i)=(+8-7i-40i-35)/(64+49)#

#(-1+5i)/(-8-7i)=(-27-47i)/(113)#

#(-1+5i)/(-8-7i)=-27/113-(47i)/113#

God bless....I hope the explanation is useful.