How do you divide #(-15x)^7 / (25x)^9#?

1 Answer
Aug 7, 2015

There are probably many ways to express this result; my version is
#color(white)("XXXX")##-3^7/(5^5x^2)#

Explanation:

#((-15x)^7)/((25x)^9)#

#color(white)("XXXX")##=((-15)^7)/((25)^9) * (x^7)/(x^9)#

#color(white)("XXXX")##=((-15)^7)/((25)^7) * 1/(25^2) * (x^7)/(x^9)#

#color(white)("XXXX")##=((-15)/25)^7 * 1/(25^2) * (1)/(x^2)#

#color(white)("XXXX")##=(-3/5)^7*1/((5^4x^2)#

#color(white)("XXXX")##=-3^7/(5^5x^2)#